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A number of artificial procedures is used to reduce the basic, two-dimensional 

singular integral equation of the linear theory of thin airfoil of arbitrary aspect 
ratio, arbitrary form in the plane, and with the angle of attack varying along 
the wing span, to a form allowing the separation of variables, It is shown that 
the solution of the resulting equation can be reduced to solving certain homo- 
geneous Piemann’s boundary value problems admitting a solution by means of 

the Cauchy type integrals [l]. 

The basic equation in question which has been derived using the framework of the 

theory of acceleration potential has not, so far, been solved in the closed, analytic 

form. It has been the subject of numerous inv~~ga~ons and pub~catio~ aiming main- 
ly to obtain more or less correct approximations to the kernel with the view of obtain- 

ing the homogeneous equations [Z]. 

1. The basic equation of the theory of thin airfoil s moving in a straight line 

with constant velocity u through an unbounded medium, is written in the form [2] 
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Here A (5, y) is the solution sought, h (y) is the wing aspect ratio, b its half- 

span, a (y) is the half-chord ln the cross section y, v, ($/ ) is the component of 
the stream velocity normal to S, C (x) is a unction of x not known in advance 

and s, is the projection of &’ onto the fIight plane. 
Equation (1.1) describes a class of thin wings twisted hydrodynamically along the 

span, with a symmetric profile and of arbitrary form in the plane. Taking into account 
the fact that 
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we can write the equation (1.1) in the form 
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(1.2) 

Let us assume that the function 4” (X, y) satisfies the Holder condition [l] in 
both variables. Then the functions cpi and (pa will clearly satisfy this conditionas 

well, in all corresponding variables. This enables us, irrespective of the fact that the 

function rps depends on the parameters x and y, to use the known formulas for 

inverting the Cauchy type integrals in the corr~pond~g class of unctions p]. since 

the pressure jump at the wing, proportional to the function d, should vanish at the 
side edges, we shall invert the singular integral appearing in the left hand side of( 1. Z), 
in the class of functions bounded at the points y = f 1, This yields 

= cpr(%Y) = + 
s 
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under the condition 
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satisfied by the suitable choice of C (z). 
We note that the result (1.4) can be obtained without resorting to the readily avail- 

able inversion formulas, but deriving them from the solution of the corresponding 

Riemann boundary value problem [l]. In this case the equation (1.6) will serve as the 

condition of solvability of the Riemann problem in the class of bounded functions. 

Using (1.3) we can show that the left-hand side of (1.4) has the form 

and for any function c (a~) we have, in accordance with (1.4), 
1 
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The independence of the variables X and y means that, having rewritten the 
above equation with (1.5) taken into account, we can change the order of integration, 
i.e. we can write 
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Inverting now the integral appearing in the left-hand side of the first of the above 
equations in the class of functions unbounded on the leading edge and bounded on the 

trailing edge of the wing (Joukowski -Chaplygin postulate [2] ), we obtain 
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Applying to tb.is equation the operators 
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and L(u) = { vdz, 
x0 - z 

-1 -1 

we express it in the following form: 
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The function D (x) generated by the operator M, can be expressed in terms of 

c (35) ; this is however immaterial in what follows. Indeed, since we have 

differentiation of ( 1.8) with respect to y yields 
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? s m (% Yo) dY0 
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From the second formula of (1.7) it follows 

A (Lx, y) = - h (y) 

and we can therefore write the previous equation in the form 
1 
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Setting now B (z, y) = X (z) Y (Y) and separating the variables, we finally obtain 

’ fl(Yo) S dY0 
- = PA (Y> y (Y) dY0 Yo- Y 

-1 

1 

S 
dX PO) dzo 

dxo 
- = -2pX(z) zo - 5 

-1 

(1.9) 

where p is the constant of separation. 
The equations obtained, formally coincide with the Prandtl equation of the theory 

of one-dimensional (line) airfoil [4]. 
Equations (1.9) can be solved using the method described in Sect. 2. 

2. The function Y (y) which is to be determined, is a solution of the following, 

one-dimensional singular integro-differential equation: 

i ! 
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in which h = h (y) is a given, smooth real function of its argument. Introducing 
the auxilliary function 

Rez =y 
we can reduce the solution of (2.1) to solving the following boundary value problem 
with the boundary condition containing the derivatives 

“+ (y) + dF- (y) - h (y)[F+ (y) - F- (y)] = 0 (ye (- 1, 1)) t2. 2) 
dY dy 

(F* (y) = J CD+ (y) dy + const, Y (y) =: F” (Y) - F- (Y)) 

Here F* (y) and CD* (y) are the limiting values of the functions F (z) and Q, (z) 
attained by approaching the segment (-1,l) from different directions. 

Introducing new functions Qk (y) by means of the relations 

s Q* (Y) dy = exp (3 $ h (y) dy) F* (y) 
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we can write the boundary condition (2.2) in the form 

Q+ W = - e=p (2 J h (14 f-41) O- (Y) (2.3) 

characteristic for the homogeneous Riemann boundary value problem [l]. 

The coefficient of the problem (2.3) has no singularities and its exponential index 

in always positive, consequently the problem has a solution which can be expressed in 
terms of the Cauchy type integrals [l]. 

REFERENCES 

1. G a k h o v, F. D. Boundary Value Problems. (English translation), Addison- 
Wesley Publ, Co., 1966. 

2. P a n c h e n k o v, A. N. Theory of the Acceleration Potential, Novosibirsk, 
“Nauka”, 1975. 

3. M u s h e 1 i s h v i 1 i, N. I. Singular Integral Equations. Moscow, Fizmatgiz, 
1962. 

4. K a r a f o 1 i, E. Aerodynamics of the Airplane Wing. Incompressible Fluid. 

Moscow, Izd. Akad. Nauk SSSR, 1956. 

Translated by L. K. 


